Classical Limit of Quantum Mechanics
نویسنده
چکیده
para o valor esperado de uma dada observável fı́sica A = A(p, q, t) representada pelo operador Â. As equações (1) e (2) são válidas desde que o potencial externo V varie vagarosamente dentro de um pacote de onda bem localizadoψPE (Pacote de Ehrenfest). Assim, de acordo com os livros-texto [1], as equações de Newton são obtidas como limite clássico da equação de Schrödinger. No entanto, Ballentine et al. [6,7] (veja também [8,9]) recentemente demonstraram que as condições de validade do teorema de Ehrenfest não são nem necessárias nem suficientes para caracterizar o limite clássico da mecânica quântica. O método WKB [10-14], por sua vez, parte de uma dada solução ψ = e /ı)S1+( /ı) S2+...]/ (4)
منابع مشابه
مطالعه نیمهکلاسیکی چند رابطه جابهجاگری تعمیمیافته
Our aim in this paper is to find the observable effects of the generalized commutators. For this purpose we investigate two problems in quantum mechanics with minimal length procedure. Firstly, we study hydrogen atom energy levels via minimal length uncertainty relation algebra. From comparing our results, with experimental data we estimate an upper limit for minimal length. Secondly, we inve...
متن کاملThe classical - statistical limit of quantum mechanics . Mario
The classical-statistical limit of quantum mechanics is studied. It is proved that the limit ~ → 0 is the good limit for the operators algebra but it si not so for the state compact set. In the last case decoherence must be invoked to obtain the classical-statistical limit.
متن کاملThe classical - statistical limit of quantum mechanics
The classical-statistical limit of quantum mechanics is studied. It is proved that the limit ~ → 0 is the good limit for the operators algebra but it si not so for the state compact set. In the last case decoherence must be invoked to obtain the classical-statistical limit.
متن کاملNew variational principles in classical and semiclassical mechanics
We demonstrate that reciprocal Maupertuis’ Principle is the classical limit of Schrödinger’s Variational Principle in Quantum Mechanics. Misha Marinov loved analytical mechanics and understood its beauty. Canonical transformations, Poisson structures, symplectic geometry etc. were the notions that he constantly used in his original papers, and in his famous review on path integral. One of the a...
متن کاملدینامیک کوانتومی ذره جرمدار روی دوسیتر 3+1
The phase space which is related to the motion of massive particle on 1+3- De sitter space is a 3-dimensional complex sphere. Our main aim in this study is discribing this movement in the frame quantum mechanics. Transfering from classical mechanic to quantum mechanics is possible by means of coherent states. Thus, after determination of this state, we quantize some of the classical observables.
متن کاملThe Geometry of Quantum Mechanics
A recent notion in theoretical physics is that not all quantum theories arise from quantising a classical system. Also, a given quantum model may possess more than just one classical limit. These facts find strong evidence in string duality and M–theory, and it has been suggested that they should also have a counterpart in quantum mechanics. In view of these developments we propose dequantisati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003